

6th European CAR T-cell Meeting Valencia, Spain

15-17 February 2024

mRNA CAR-T in Myasthenia Gravis

6th edition of the European CAR T-cell Meeting February 26, 2024

James F Howard Jr, MD

Professor of Neurology, Medicine & Allied Health

Departments of Neurology, Medicine & Allied Health The University of North Carolina at Chapel Hill

Department of Clinical Sciences (Neurology) North Carolina State College of Veterinary Medicine howardj@neurology.unc.edu

Howard Disclosures (26 February 2024)

Research Support (active & within 2 years)

- Ad Scientiam
- Alexion Pharmaceuticals
- argenx BV
- Cartesian Therapeutics
- CDC (The Centers for Disease Control & Prevention)
- Duke Research Institute
- NIH (NINDS, NIAMS, RDCRN-MGNet)
- NMD Pharma
- PCORI
- UCB Bioscience

Consulting / Advisory Services (within 2 years)

- Alexion Pharmaceuticals
- argenx BV
- Avilar Therapeutics
- F. Hoffman LaRoche
- Horizon Therapeutics (now Amgen)
- Merck EMD Serono
- NMD Pharma
- Novartis Pharmaceuticals
- Regeneron Pharma
- Sanofi USA
- Seismic Therapeutics
- Toleranzia AB
- UCB Bioscience

Boards (e.g. Directors & Advisory) (active)

- Alexion gMG Scientific Advisory Board, (Chair)
- argenx gMG Collegium, (Chair)
- Horizon Therapeutics (now Amgen), Scientific Advisory Board, (Chair)
- UCB, Rare Disease Connect Neurology, Steering Committee

Myasthenia Gravis

At Rest 30 Seconds Later with rest

- Chronic, antibody dependent, complement mediate autoimmune neuromuscular disorder
- Characterized by variable fluctuating muscle weakness and exertional muscle fatigue
- * Multiple effector antibodies targeting
 - * acetylcholine receptor AChR,~83%),
 - muscle specific kinase (MuSK, ~8%),
 - lipoprotein receptor-related protein 4 (LRP-4, <1%)</p>

Seronegative population (~8%)

Neuromuscular Transmission Mechanisms of Synaptic Block

Conti-Fine, BM et al. The Journal of Clinical Investigation, (2006):116 (11) 2843-54. doi:10.1172/JCI29894

Myasthenia Gravis

Complement Activation

st ional orane

- Anti-AChR antibodies bind to the AChR and initiate the complement cascade via activation of the C1 complex
- The product of the complement cascade is the membrane attack complex (MAC / TCC)

Howard JF et al, Exp Opinion Invest Drugs, 2021 v30 p483

Conventional engineered cell therapy uses DNA, which can lead to toxicity and increased patient burden

- Effector function of cell therapy engineered with DNA amplifies exponentially with cell replication and frequently leads to uncontrollable PK/PD
- Cells administered at subtherapeutic levels quickly proliferate beyond therapeutic window

DNA transduced CAR-T associated with:

- Cytokine release syndrome (CRS)
- Neurotoxicity and parkinsonism
- Cytopenia (from pre-treatment chemo)
- Infections
- Secondary malignancies
- Death

DNA CAR-T cell therapy creates increased patient burden

- Patients receiving DNA CAR-T require inpatient administration and pre-treatment chemotherapy (lymphodepletion)
- Indirect costs high due to monitoring/treatment of toxicities

Cartesian's mRNA approach is designed to expand the reach of potent cell therapy products to address potential autoimmune indications

- Image: Image
- No requirement for cell proliferation → no expected need for pre-treatment chemotherapy → no Grade 3-4 cytopenias

Expectation for cells to be administered at the **therapeutic but sub-toxic doses**

Descartes-08 has been **administered to 66 patients** with autoimmune diseases and cancer¹ with **no CRS**, **neurotoxicity**, **or infections** observed

Ability to treat in **outpatient setting** offers potential to be **administered in community clinics**

Potential for safe re-dosing

mRNA CAR-Ts have potential to **overcome** challenges of DNA CAR-Ts

- No expected need for hospitalization, lymphodepletion, toxicity management, and monitoring
- Produces multiple cycles from one apheresis
- Lower manufacturing costs

¹All open-label patients treated with Descartes-08 as of Oct 30, 2023⁸

Descartes-08 believed to be the first mRNA CAR-T in clinical development for autoimmune disease

- Engineered by transfection of autologous CD8+ T cells with mRNA encoding BCMA-directed CAR
- Typical lot processed for infusion within ~3 weeks
- Observed to enhance killing and suppression of inflammatory cytokine secretion
- Phase 2a data in myasthenia gravis underscores potential for deep and durable responses versus current agents
- Granted U.S. FDA orphan designation for generalized myasthenia gravis (2022)

mRNA CAR-T MG-001 Descartes-08 (Phase 2; NCT04146051)

Patient eligibility

- ✤ MG-ADL <u>></u> 6
- MGFA Clinical Class II-IV
- Stable medication dosing <u>></u> 8 wks prior to infusion
- * 4-week washout for biologics
- IVIg and plasma exchange not allowed after starting Descartes-08

Patients on immunosuppression or complement inhibitors expected to be able to continue their treatment while receiving Descartes-08

Cell manufacturing platform tolerates most standard immunosuppressive therapies

mRNA CAR-T MG-001 Descartes-08, Part 2 (NCT04146051)

Phase 1b/2a Open Label

Key Inclusion/Exclusion Criteria

- * MGFA Clinical Class II-IV
- # MG-ADL ≥ 6
- * AChR Ab+ or AChR Ab-
- Stable SOC

Primary endpoint

* Type and frequency of AEs at the MTD administered at 3 different schedules

Secondary endpoints

Multiple MG outcome measures, ie MG-ADL, MG-QMG, MG-Composite Scores

Abbreviations: AChR: acetylcholine receptor; ADL: Activities of Daily Living; AEs: adverse events; CAR: chimeric antigen receptor; MG: myasthenia gravis; MGFA: Myasthenia Gravis Foundation of America, MTD: Maximum Tolerated Dose; SOC: Standard of Care; QMG: Quantified MG Score

Group 2; n=7

Data are mean score improvement (point) and 95% Confidence Interval (light blue shading).

Descartes-08 was observed to be safe and well-tolerated in MG

THE LANCET Neurology

Volume 22, Issue 7, July 2023, Pages 578-590

KEY OBSERVATIONS:

- No dose-limiting toxicities
- No cytokine release syndrome
- No neurotoxicity
- No pre-treatment chemotherapy and related cytopenia
- Outpatient treatment

	Grade*	Part 1 (n=3)	Part 2: all groups (n=11)	Part 2: group 1 (n=3)	Part 2: group 2 (n=7)	Part 2: group 3 (n=1)
Hand numbness	2	1 (33%)	0	0	0	0
Headache	1	1 (33%)	5 (45%)	1 (33%)	3 (43%)	1 (100%)
Muscle soreness	1	1 (33%)	1 (9%)	0	1 (14%)	0
Nausea	1	1 (33%)	4 (36%)	2 (67%)	2 (29%)	0
Rash	3	0	1 (9%)	1 (33%)	0	0
Itchy throat	1	0	2 (18%)	0	1 (14%)	1 (100%)
Vomiting	1	0	3 (27%)	2 (67%)	1 (14%)	0
Weakness	1	0	2 (18%)	2 (67%)	0	0
Line infiltration	1	0	1 (9%)	1 (33%)	0	0
Fever	1	0	4 (36%)	1 (33%)	3 (43%)	0
Shortness of breath1	1	0	2 (18%)	1 (33%)	1 (14%)	0
Chills	1	0	2 (18%)	1 (33%)	1 (14%)	0
Diarrhoea	1	0	1 (9%)	1 (33%)	1 (14%)	0
Gum inflammation	1	0	1 (9%)	0	1 (14%)	0
Teeth sensitivity	1	0	1 (9%)	0	1 (14%)	0
Night sweats	1	0	1 (9%)	0	1 (14%)	0
Restless leg	1	0	1 (9%)	0	1 (14%)	0
Light-headedness	1	0	1 (9%)	0	1 (14%)	0

*There were no adverse events of grade 3 or higher reported in part 1, and no grade 2 or grade 4 events reported in part 2, where grade 1 is mild, grade 2 is moderate, grade 3 is severe, and grade 4 is life-threatening. ¹Not associated with hypoxia

Descartes-08 observed to induce deep and durable clinical improvement in MG

- Notable magnitude and duration of response across all 4 standard MG severity scales
- Responses appear to deepen
 after completing treatment
 at Week 6
- Positive twelve-month followup data from Phase 2a study reinforce prior findings published in *Lancet Neurology*

Manuscript submitted for peer review; pre-print available at medRxiv.org Efficacy dataset includes all MG patients completing the 6-dose once-weekly regimen (n=7). Data are mean score improvement (point) and 95% Confidence Interval (light blue shading). Note that QOL scale does not have an agreed-upon threshold for clinically meaningful disease improvement; MG-ADL, MGC and QMG scales are validated, quantitated, standardized instruments of disease severity and have been acceptable endpoints for registration studies.

14

Descartes-08 observed to induce deep and durable clinical improvement in MG

- Notable magnitude and duration of response across all 4 standard MG severity scales
- Responses appear to deepen
 after completing treatment
 at Week 6
- Positive twelve-month followup data from Phase 2a study reinforce prior findings published in *Lancet Neurology*

15

Manuscript submitted for peer review; pre-print available at medRxiv.org Efficacy dataset includes all MG patients completing the 6-dose once-weekly regimen (n=7). Data are mean score improvement (point) and 95% Confidence Interval (light blue shading). Note that QOL scale does not have an agreed-upon threshold for clinically meaningful disease improvement; MG-ADL, MGC and QMG scales are validated, quantitated, standardized instruments of disease severity and have been acceptable endpoints for registration studies.

Measures of Disease Severity at Week 12

	All participants who completed treatment in part 2 (n=9)	By treatment group		By myasthenia gravis type					
		Group 1 (n=2)	Group 2 (n=7)	AChR antibody- positive (n=6)	MuSK antibody- positive (n=2)	Seronegative (n=1)			
Mean score change (95% CI)*									
MG-ADL	-5·9 (-9 to -2·8)	-6, -8	-6 (-15 to 3)	-6 (-11 to -1)	-3, -4	-8			
QMG	-7 (-11 to -3)	-5, -3	-8 (-20 to 4)	-5 (-10 to 0)	-9, -5	-17			
MGC	-14 (-19 to -9)	-7, -11	-15 (-29 to -1)	-14 (-21 to -7)	-14, -7	-22			
MG-QoL-15r	-9 (-15 to -3)	-8, 4	-11 (-23 to 1)	-8 (-17 to 1)	-10, -6	-14			
Number of participants with improvement (%)									
MG-ADL decrease ≥2 points	8 (89%)	2 (100%)	6 (86%)	5 (83%)	2 (100%)	1 (100%)			
MGC decrease ≥3 points	9 (100%)	2 (100%)	7 (100%)	6 (100%)	2 (100%)	1 (100%)			
QMG decrease ≥3 points†	8 (89%)	2 (100%)	6 (86%)	5 (83%)	2 (100%)	1 (100%)			
MG-ADL decrease ≥6 points‡	5 (56%)	2 (100%)	3 (43%)	4 (67%)	0	1 (100%)			

Data are for participants in groups 1 and 2 of part 2 who completed all six infusions and 12-week follow-up. One group 1 participant withdrew from the study before the first assessment after treatment. Clinical efficacy outcomes for the single group 3 participant are shown in figure 1. AChR-acetylcholine receptor. *Individual values are presented for groups of ≤ 2 participants. †All participants who had the prespecified ≥ 2 -point improvement in QMG also had a ≥ 3 -point improvement. ‡Post-hoc analysis of depth of response.

Table 3: Measures of disease severity at week 12

Lasting reductions in autoantibody titers are consistent with the observed clinical responses and mechanism of action

Manuscript submitted for peer review; pre-print available at medRxiv.org.

Anti-AChR Antibody titers of all participants who received six once-weekly infusions and had detectable levels at baseline (n=3), measured in a CLIA-certified lab. Lines represent individual participants.

Retreated patients experienced rapid improvement in clinical scores which was ongoing at last follow-up (Month 18 and Month 20)

Retreatment patient 1

Experienced worsening of symptoms to baseline at Month 12

AChR-Ab pos, Failed AZA, Ecu, Pred, Thymex

Retreatment patient 2

Experienced worsening of symptoms approximately 18 months after initial round of therapy

Seroneg, Failed Pred, MMF

Changes in anti-meningococcal antibody titers and total immunoglobulin levels over 12 months

Manuscript submitted for peer review; pre-print available at medRxiv.org.

Quantitative immunoglobulin levels and anti-meningococcal antibody titers of all participants who received six once-weekly infusions (n=7), measured in a CLIA-certified lab. Lines represent mean levels relative to pre-treatment ("Pre"). Error bars represent 95% Confidence Interval.

19

Descartes-08 in MG Phase 2b randomized, placebo-controlled study

Plan to treat ~30 patients

PRIMARY ENDPOINT

✤ Proportion of MG Composite responders (≥5-point reduction) at Day 85

SECONDARY OBJECTIVES

- * Safety and tolerability
- * Quantify clinical effect of Descartes-08 over 1 year
- QMG, MG QoL 15R, MG ADL, and MG PIS (change from baseline to Day 85)
- Compare effect of Descartes-08 versus placebo on MG scales (change from baseline to Day 85) in patients who cross over from placebo to Descartes-08

Enrollment underway, with top-line results expected in mid-2024

MG ADL, MG Activities of Daily Living MG PIS, MG Post-intervention Status

mRNA CAR-T

Summary

* mRNA CAR-Ts have potential to overcome the multiple challenges of DNA CAR-Ts

- Ability to treat in outpatient setting
- No lymphodepletion
- Produces multiple cycles from one apheresis
- Limited adverse event profile with no CRS, ICANS or severe infection to date
- * Expectation for cells to be administered at therapeutic but sub-toxic doses
- Potential for safe re-dosing

Thank You!

Any questions?

howardj@neurology.unc.edu

University of North Carolina at Chapel Hill